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Abstract

It is commonly perceived that the strongest language models (LMs) rely on a
combination of massive scale, instruction data, and human feedback to perform
specialized tasks – e.g. summarization and paraphrasing, without supervision. In
this paper, we propose that language models can learn to summarize and paraphrase
sentences, with none of these 3 factors. We present IMPOSSIBLE DISTILLATION, a
framework that distills a task-specific dataset directly from an off-the-shelf LM,
even when it is impossible for the LM itself to reliably solve the task. By training a
student model on the generated dataset and amplifying its capability through self-
distillation, our method yields a high-quality model and dataset from a low-quality
teacher model, without the need for scale or supervision. Using IMPOSSIBLE
DISTILLATION, we are able to distill an order of magnitude smaller model (with
only 770M parameters) that outperforms 175B parameter GPT-3, in both quality
and controllability, as confirmed by automatic and human evaluations. Furthermore,
as a useful byproduct of our approach, we obtain DIMSUM+, a high-quality
dataset with 3.4M sentence summaries and paraphrases. Our analyses show that
this dataset, as a purely LM-generated corpus, is more diverse and more effective
for generalization to unseen domains than all human-authored datasets – including
Gigaword with 4M samples.

1 Introduction

The success of large language models (LLMs) has led to a paradigm shift in NLP research—tasks
such as sentence summarization and paraphrasing can now be done without task-specific supervision,
simply by prompting LLMs with instructions [27, 51, 50]. The stellar performance of LLMs, however,
comes with costs: training LLMs to solve unsupervised tasks often requires multi-billion scale models,
instruction data, and human feedback [32, 22, 14]. A natural question arises in this paradigm: does
the task-solving capability uniquely emerge in the massive-scale, instruction-following LMs? If
smaller, off-the-shelf LMs (e.g. GPT-2) do possess latent knowledge for these tasks, can we make
use of this knowledge to train an efficient, yet powerful task model?

We present IMPOSSIBLE DISTILLATION, a novel distillation framework allowing off-the-shelf LMs
to perform specialized tasks – sentence summarization and paraphrasing – without the need for scale
or supervision. Our framework operates by (1) directly generating a task-specific dataset from an
off-the-shelf LM, then (2) distilling a model using the dataset, thereby requiring neither a massive
scale model nor curated human supervision. Aside from its applicability, IMPOSSIBLE DISTILLATION
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Paraphrase (News Domain) Paraphrase (Biomedical Domain)

Sentence x: At issue is a change in work rules that
the company says will help reduce a massive surplus
of processed steel.

Sentence x: It is likely that the evidence from other
settings, such as those in which birth size was decided
by fetal ultrasound, will yield similar estimates.

Paraphrase y: The dispute is over a proposed change
to the company’s working conditions that the com-
pany says will help it reduce the amount of surplus
steel.

Paraphrase y: The findings should be expected to
be generalizable to other settings, including those in
which birth size is determined by fetal ultrasound.

Summary (Reddit Domain) Summary (Biomedical Domain)

Sentence x: I’ve mentioned this to a few other peo-
ple, and it seems that everyone else thinks this is
completely weird, I don’t know why.

Sentence x: Additionally, the in vivo assays using P.
berghei infected mice can be used as an alternative to
screen more potent compounds for treating malaria.

Summary y: I’ve been telling people about it and
they all think it’s a weird thing to do.

Summary y: The in vivo studies can be used as a
platform to screen novel antimalarial compounds for
use in malaria therapy.

Table 1: Samples in DIMSUM+. All input-output pairs are generated by ∼1.6B LMs, without
human supervision. IMPOSSIBLE DISTILLATION distills a task-specific dataset and model from
off-the-shelf LMs across domains, without scale or supervision. More examples in Appendix E.

is extremely powerful, enabling even small LMs (with <1B parameters) to outperform orders of
magnitude larger LMs (e.g. GPT-3, with 175B parameters), all without task-specific supervision.

In IMPOSSIBLE DISTILLATION, dataset generation involves searching for high-quality input-output
pairs (e.g. sentence-summary pairs) for the given task, using only an off-the-shelf LM (e.g. GPT-2),
i.e. with no help of instruction-tuned models or initial data of any form. The key idea for making
this process tractable is to (1) effectively reduce down the LM search space for input-output pairs
through constrained decoding, and (2) ensure high-quality distillation with post-generation filters,
derived from an explicit definition of the target task. By training a student model on this generated
dataset, then further amplifying its capability through self-distillation, we yield a compact, yet strong
end-stage model that outperforms much larger LMs in both automatic and human evaluation.

IMPOSSIBLE DISTILLATION is entirely independent of large and costly models or task-specific
supervision, allowing us to distill the student model from any selection of initial LM (or a combination
of LMs). In practice, we distill a compact task model (770M parameters) from 3 distinct LMs (all with
∼1.6B parameters), covering news / reddit / biomedical domains. Despite its size, the distilled model
remarkably outputs more controllable, yet higher-quality summaries and paraphrases than 200 times
larger GPT-3. Moreover, as a natural byproduct of this distillation, we obtain DIMSUM+, a large-
scale sentence-level summarization and paraphrasing dataset with total of 3.4M pairs. Importantly,
we find that DIMSUM+, although purely LM-generated, actually exhibits more lexical diversity and
wider range of summary types than human-authored datasets. It even shows better adaptability to
unseen domains: on an out-of-domain test set, a summarizer trained on our dataset outperforms the
same model trained on the larger, human-authored Gigaword [59].

More broadly, our work shows that small, off-the-shelf LMs can simulate a rich source of task-specific
knowledge, even when the model itself cannot reliably solve the task. By identifying and amplifying
this knowledge into a high-quality dataset, IMPOSSIBLE DISTILLATION demonstrates a promising
way of training task models through an efficient, effective, and reusable pipeline.

2 IMPOSSIBLE DISTILLATION

As shown in Figure 1, IMPOSSIBLE DISTILLATION starts from an off-the-shelf LM1, then dis-
tills its task-specific knowledge based on a two-stage process of decoding-guided distillation and
self-distillation. Our framework does not involve extra resource of human-written sentences, and
specifically requires two inputs: a teacher model MLM and a student model M0, which can all be
initialized from generative LMs.

1While our method supports distilling from multiple initial LMs, we explain with a single LM for clarity.
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Figure 1: Overview of IMPOSSIBLE DISTILLATION. Starting from a small, off-the-shelf LM, we
gradually produce higher-quality dataset and task model, outperforming even the 200 times larger
GPT-3 in both summarization and paraphrasing.

In decoding-guided distillation, our goal is to directly generate a task-specific dataset D0 from
scratch, using only the pre-trained teacher model MLM. To generate a high-quality dataset with
minimal intervention to the model, we leverage an overgenerate-filter strategy: first generate a large
pool of input-output pairs using MLM, then leave only the ones that qualify for the target task (e.g.
meaningful sentence-summary pairs) using post-generation filters. Then, we use D0 to fine-tune M0

into an initial task model (M0 → M1). In self-distillation, the initial task model M1 is further
refined by fine-tuning on its own high-quality generations. We generate candidate pairs using MLM
and M1, filter high-quality pairs into D1, then train M1 on this dataset to amplify its capability
(M1 → M2).

By iterating over a generate-filter-train loop across the two stages, we gradually distill a higher
quality dataset (D0 → D1) and a stronger task model (M0 → M1 → M2). In the rest of this
section, we illustrate the specifics of each stage (§2.1 – §2.2), and how we use the pipeline to execute
the overall distillation (§2.3).

2.1 Decoding-guided Distillation Stage

2.1.1 Generating candidate pairs

Given our task of interest, we first generate a large pool of candidate input-output pairs C0 = {(x1, y1),
· · · , (x|C0|, y|C0|)} from an off-the-shelf LM MLM. The key challenge here lies in the low sample-
efficiency of generated pairs. For example, a naive way of pair generation – just sampling x and y
independently from MLM – will not result in any meaningful pair that passes the task-specific filters.
Prior works compensate for this low sample-efficiency by prompting LLM with task instructions
[70, 61], but our method do not assume MLM is few-shot promptable or instruction-following. This
motivates us to impose a set of constraints as a strong prior for the LM decoding algorithm, which
can be adopted by any MLM and effectively reduces down the search space for candidate pairs. By
simply imposing these constraints, we surprisingly find a large population of valid task pairs.

Contextual Constraints We begin by imposing contextual constraints, by first sampling a left
context ci from MLM, then conditioning the generation of both xi and yi on ci. Intuitively, this
constrains both sides of each pair to be a natural completion of the shared context, increasing the
pairwise semantic coherence without resorting to an external source of context (e.g. human-written
sentences). As shown in Figure 2, we collect ci by generating 1-5 sentences from MLM given a
simple domain prefix. More details on contextual constraints are provided in Appendix A.1.

Sequential Generation with Lexical Constraints Inspired by an empirical observation that good
summaries and paraphrases tend to preserve salient keywords in the original sentence, we consider
the sequential generation of (xi, yi) with lexical constraints. As shown in Figure 2, we first generate
xi given ci as the prefix, then also generate yi given ci but additionally constrained to include the
keywords in xi, extracted using an off-the-shelf keyword extraction tool [24]. Specifically, we employ
Neurologic [44], a constrained decoding algorithm based on beam search to generate top k1 candidate
yis per each xi:

xi ∼ PM0(·|ci); {yi1, · · · yik1} = NeurologicMLM
(·|ci; keyword(xi)) (1)

3
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Figure 2: By imposing constraints in the decoding process of off-the-shelf LMs, we effectively reduce
down the search space for task-specific pair generation. More examples shown in Appendix E.

For each ci, this process yields k1 candidate pairs: Cseq,i = {(xi, yi1), · · · , (xi, yik1)}. Aggregating
pairs across multiple cis, we obtain Cseq =

⋃
i Cseq,i.

Parallel Generation with Sampled Sentences While sequential generation preserves the salient
spans of x in their surface-form, we also note that important phrases are often abstracted to shorter
expression in good summaries and paraphrases. Hence, as an alternative to the extractive sequential
generation, we introduce the parallel generation of pairs with stochastic decoding. We first sample
a pool of k2 sentences given ci as prefix from MLM using Nucleus-Sampling [29], then enumerate
candidate pairs as the combination of these sentences:

{si1, · · · , sik2} = Nucleus-SamplingMLM
(·|ci; τp) (2)

Cpara,i = {(sim, sin)|m,n ∈ [1, k2],m ̸= n} (3)

Here, τp is the top-p threshold. Note that this process does not impose any surface-level constraint to
the generated sentences; we find that lowering the top-p threshold (τp = 0.7) and hence sampling from
a narrower subset of vocabulary suffices to induce a sample-efficient set of candidate pairs (Appendix
D). Collecting the pairs across multiple cis, we obtain Cpara =

⋃
i Cpara,i.

Finally, we define the initial candidate set as the union of two sets of generated pairs: C0 = Cseq∪Cpara.
Broadly seen, the sequential generation yields a high-precision, extractive set of pairs, while the
parallel generation results in a diverse, abstractive set of pairs. The heterogeneous properties of the
two process enrich the sample diversity of our generated dataset.

2.1.2 Filtering for the high-quality pairs

Next, we filter the subset of candidate pairs D0 that qualify as good task-specific examples. Below,
we first elaborate each of the filters with sentence summarization as the target task, then discuss how
it generalizes to paraphrase generation.

Entailment Filter A faithful summary should be logically entailed by the original statement without
hallucinating unsupported content. NLI models are well-suited to quantify this relationship, as they
are trained to detect the logical entailment between an arbitrary pair of statements [10, 38]. Hence,
we define a binary filter based on a small NLI model [41], and discard the pairs that do not achieve
the entailment score over a predefined threshold τentail:

fentail(x, y) = 1

{
PNLI(x ⇒ y) ≥ τentail

}
(4)

Length Filter A good summary should be a concise representation of the original statement. We
therefore discard all pairs whose compression ratio (i.e. the sequence length ratio of y to x) is larger
than a predefined threshold τcomp_ratio:

fcomp_ratio(x, y) = 1

{
|y| < |x| · τcomp_ratio

}
(5)

Diversity Filter Our generation process decodes a large pool of pairs from a shared prefix c, which
often results in multiple pairs having similar x or y. To remove such duplicate pairs, we employ a
diversity filter fdiversity. Concretely, we define two pairs (x1, y1) and (x2, y2) to be duplicate when
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one pair entails another, either on the input side (x1 ⇒ x2) or the output side (y1 ⇒ y2). The
diversity filter operates by first grouping all entailing pairs, then discarding all but one with the largest
entailment score PNLI(x ⇒ y). In practice, this filter can be efficiently implemented using graph
traversal; we detail the formal algorithm in Appendix A.2.

Incorporating all filters, we filter the task-specific dataset D0 as following:

D0 = {(x, y)|(x, y) ∈ C0, fentail ∧ fcomp_ratio ∧ fdiversity(x, y) = 1} (6)

Generalizing to Paraphrase Our distillation process is grounded on the explicit definition of the
target task, which allows the framework to generalize to paraphrase generation by simply redefining
the filters. In general, a good paraphrase y should bear a bidirectional entailment with the original x,
while not being too short or long compared to x. These assumptions are reflected in the corresponding
updates to the respective filters:

fentail(x, y) = 1

{
min

(
PNLI(x ⇒ y), PNLI(y ⇒ x)

)
≥ τentail

}
(7)

fcomp_ratio(x, y) = 1

{
|x| · τcomp_ratio,1 ≤ |y| < |x| · τcomp_ratio,,2

}
(8)

Finally, an important property of a paraphrase is that it should not be similar to the original statement
on the surface level. Following prior works, we quantify this constraint using the two metrics –
Density [25] and ROUGE-L [40] – that measure surface-form similarity of two statements:

fabstract = 1

{
max

(
Density(x, y),ROUGE-L(x, y)

)
≤ τabstract

}
(9)

Training Initial Task Model We finish the decoding-guided distillation stage by training an initial
task model using the generated dataset D0. The student model M0 is fine-tuned into M1 by
maximizing E(x,y)∼D0

[logPM1
(y|x)], i.e. the conditional log-likelihood of y given x.

2.2 Self-Distillation Stage

Next, the task capability of M1 is further amplified into M2 through self-distillation. To generate
candidate pairs without using human-written sentence data, we sample the input sentence x directly
from teacher LM MLM, then generate the output sentence y by feeding x into the task model M1:

C1 =
{
(x1, y1), · · · |xi ∼ PMLM(·); yi ∼ PM1

(·|xi)
}

(10)

Using the same filters as the previous stage, we filter the high-quality pairs into D1. Finally, we
fine-tune M1 on D1, yielding the end-stage model M2. Consistent with the prior findings on
self-distillation [55, 2], this simple process significantly improves the performance of our task model
(§3.4). In addition, our self-distillation outputs a large-scale, standalone dataset that can be evaluated
and reused, e.g. to directly train a task model without re-iterating the distillation procedure (§3.3).

2.3 Distillation pipeline

In this section, we detail the distillation pipeline we apply in IMPOSSIBLE DISTILLATION. We
start from 3 off-the-shelf LMs, and distill a single, powerful model T5IMPDISTILL capable of both (1)
controllable sentence summarization and (2) paraphrasing across multiple domains.

Initial dataset We first generate the initial dataset D0 from off-the-shelf LMs. Our goal here is to
synthesize a large-scale, multi-domain dataset for both summarization and paraphrasing. To do this,
we start off 3 pre-trained LMs, GPT-2 [56], CTRL [35], BioGPT [45] – all with ∼1.6B parameters
– generating pairs in news, reddit, biomedical domain respectively. We first sample 150k samples
of cis, then generate candidate pairs with each ci as the left context. Filtering these pairs with the
respective set of filters for summarization and paraphrasing, we yield D0 with 380k pairs (220k for
summarization and 160k for paraphrasing).

Quantizing D0 for Controllability While a student model can be trained directly on the initial
dataset, prior works show that such a model typically lacks control over the important properties of
generated sequences (e.g. summary length), resulting in sub-optimal performance [18]. Through
IMPOSSIBLE DISTILLATION, endowing controllability to the student model is straightforward: we
quantize the dataset based on controlled properties, then simply train the model with a control code
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Dataset Turk QQPsumm QQPpara

Model R-1 R-2 R-L B-F1 R-1 R-2 R-L B-F1 Self-BLEU iBLEU B-F1

PEGASUS 90.9 86.7 90.7 96.2 68.1 51.4 66.3 95.3 43.7 7.32 98.6
Flan-T5 91.0 86.3 90.4 96.4 69.2 52.5 67.5 95.5 42.5 7.39 96.1

GPT-3few-shot 70.1 48.7 63.5 93.4 62.2 38.5 56.9 94.3 29.8 5.53 96.6
GPT-3zero-shot 67.7 44.8 59.6 91.7 59.2 34.8 55.2 94.6 12.6 5.38 94.8
Flan-T5few-shot 46.5 33.7 44.8 85.7 54.7 35.3 52.5 93.1 81.8 5.60 98.8
Referee 66.2 42.4 59.1 89.2 59.3 34.2 54.6 94.1 - - -
T5IMPDISTILL 71.6 57.8 69.4 93.8 65.2 45.9 63.2 94.9 36.2 8.31 96.0

Table 2: Automatic evaluation of T5IMPDISTILL and baseline methods on three benchmark datasets.
T5IMPDISTILL outperforms all unsupervised baselines across all benchmarks, including 200x larger
GPT-3 with few-shot examples. We differentiate supervised methods (Top 2 rows) from unsupervised
methods, and mark the best performance in each group in bold. Following prior works, we report
ROUGE-1/2/L and BERTScore F1 [78] for summarization, Self-BLEU, iBLEU (α=0.8) [62] and
BERTScore F1 for paraphrase generation.

[35] for each group. In this work, we focus on the control over two aspects of summaries – length and
abstractiveness, and quantize D0 into 5 groups of samples: {long / short}-{abstractive / extractive}
summaries, and paraphrases. The specific criteria of quantization are described in Appendix A.3.

Training Multi-task Model We fine-tune T5-large [57] with 770M parameters on the quantized
D0, yielding initial model M1. For each group, we prepend the given instruction to the input x (e.g.
Generate a long, abstractive summary of ...) as control code, then train the model to
maximize likelihood of output y. Next, we generate D1 by first sampling 2M input sentence x from
MLM, then generating the 5 types of y per each x with M1. Filtering yields D1 consisting of 3.4M
pairs (2.1M for summarization and 1.3M for paraphrasing), which we name Dataset of impossibly
distilled summaries + paraphrases, or DIMSUM+. Finally, we fine-tune M1 with the newly
generated D1, yielding the amplified task model M2. We call this end-stage model T5IMPDISTILL.

3 Experiments

Datasets We note that most pre-existing benchmarks for sentence summarization focus on news
[59, 53, 52], which may not represent model performance across domains. To evaluate T5IMPDISTILL

across news, reddit and biomedical domain, we collect 300 sentences from human-written corpora in
each domain – XSUM [47], TL;DR [66], PubMed [48] – and compare the model summaries through
human evaluation (for supervised baselines, we use Gigaword [59] as the train set). For automatic
evaluation, we use existing benchmarks: Turk [72] and QQP [12]. Turk is a test-only benchmark,
hence we follow prior works [21, 3] to use WikiAuto [33] as the train set for supervised baselines.
QQP is originally designed for duplicate question detection, thus we filter only the duplicate question
pairs, and segregate them for summarization and paraphrasing based on the compression ratio (< 0.8
for summarization, paraphrasing otherwise). We name these subsets QQPsumm and QQPpara.

Baselines We compare T5IMPDISTILL with both the unsupervised and supervised baselines. For
unsupervised baselines, we include GPT-3 (text-davinci-003) in 5-shot and zero-shot setting,
5-shot Flan-T5-large, and Referee [61], an unsupervised summarizer distilled from GPT-3. For
supervised baselines, we use PEGASUS-large [76] and Flan-T5-large [14] fine-tuned on each dataset.

Configuration Details We compare our end-stage model T5IMPDISTILL with baselines, unless oth-
erwise specified. For dataset evaluation, we use DIMSUM, a summarization subset of DIMSUM+,
and compare it with human-authored datasets for summarization. Except for the controllability
experiments, we fix the control codes for T5IMPDISTILL to generate long and abstractive summaries.
Additional implementation details including specific values of generation parameters and filter
thresholds are provided in Appendix A.

3.1 Automatic Evaluation

Reference-based Evaluation In Table 2, we perform automatic, reference-based evaluation of
T5IMPDISTILL and the baselines. In summarization (Turk, QQPsumm), T5IMPDISTILL significantly im-
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Figure 3: Human evaluation result of IMPOSSIBLE DISTILLATION and baselines (Krippendorf’s
alpha [31] = 0.61; substantial inter-annotator agreement), using 3-point Likert scale. T5IMPDISTILL is
consistently preferred to the baselines, even including supervised models trained on Gigaword.

proves over all unsupervised methods across all metrics. Notably, T5IMPDISTILL outperforms both
few-shot and zero-shot GPT-3. Moreover, T5IMPDISTILL is the only unsupervised model that marks
higher iBLEU than the supervised baselines in paraphrasing (QQPpara). These results imply that
the task performance does not come from the scale of the model alone, and a precise distillation
algorithm can elicit stronger task performance from smaller LMs.

Controllability Evaluation Aside to its strong benchmark performance, our model supports control
over the summary length and abstractiveness based on instruction. In Appendix C, we directly
compare this controllability against instruction-following LMs, by few-shot prompting GPT-3 and
Flan-T5 to generate summaries of specific types ({long / short}-{abstractive / extractive}).

We find that instruction-following models cannot reliably follow the control instructions, even when
they are specifically given the few-shot demonstrations that abide by the control code. For example,
the mean compression ratio of “short” summaries generated by GPT-3 was 0.88, even though it
was given 5 examples of short summaries (with compression ratio < 0.5). This is consistent to the
previous findings that although GPT-3 generated summaries are controllable on a shallow level (e.g.
for number of sentences in a paragraph summary [23]), they often violate constraints on a fine-grained
level (e.g. for the total number of words in the summary [79]). In contrast, the short summaries from
our model marked mean compression ratio of 0.479, demonstrating the effectiveness of our method
for controllable summarization.

3.2 Human Evaluation

Reference-free Evaluation While reference-based metrics have been widely adopted in summariza-
tion domain [17], they may not correlate well with the human judgment of quality [43, 11, 60]. To
compensate for the limitations of automatic evaluation, we directly assess the fluency, faithfulness,
and conciseness of generated summaries through human evaluation (Figure 3). Consistent with the
automatic evaluation, T5IMPDISTILL shows superior performance in all three dimensions compared to
the baselines. We note that while the two supervised models and Referee exhibit high conciseness in
their generations, their performance gain generally comes at the cost of faithfulness. On the contrary,
T5IMPDISTILL generates fluent and concise summaries while staying faithful to the original statement,
achieving higher overall score than all baselines. We present qualitative examples in Appendix F.

Domain Ours vs.Mhuman Ours vs.Mmix

News 40.0 / 25.7 / 34.3 39.3 / 23.0 / 37.7
Reddit 37.0 / 35.0 / 28.0 31.7 / 32.3 / 36.0
Bio 38.7 / 26.0 / 34.3 39.7 / 28.0 / 32.3

Table 3: Pairwise human evaluation on LM vs.
human-written sentences for IMPOSSIBLE DISTIL-
LATION. We report win / tie / lose ratio for each
comparison.

LM-generated Sentences vs. Human-written
Sentences Unlike prior works, IMPOSSIBLE
DISTILLATION distills a task-specific dataset
by generating both sides of input-output pairs.
To analyze the effect of this purely LM-based
distillation, we test an alternative way of gener-
ating dataset – by sampling human-written sen-
tences from existing corpora (XSUM, TL;DR
and PubMed), then summarizing them with M1

to produce D1. While fixing the dataset size, we
generate two variants of D1: (1) Dhuman, gener-
ated using only the human-written sentences, and (2) Dmix, generated using 50-50 mix of human-
written and LM-generated sentences. In Table 3, we present the human evaluation result comparing
our model against the two models trained with the alternative sources of sentences (Mhuman, Mmix).
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Figure 4: Distribution of summarization strategy in Gigaword (left), DIMSUM (right).

Dataset H1 H2 H3 MSTTR

Turk 9.92 14.25 15.11 0.302
QQPsumm 9.16 14.43 16.63 0.424
Gigaword 10.12 16.87 21.22 0.472

DIMSUM 10.38 17.38 21.46 0.511

Table 4: Lexical diversity of datasets. DIMSUM,
while LM-generated, provides more lexical di-
versity than human-authored datasets.

Configuration R-L B-F1

In-domain supervision (100%) 67.5 95.5

Gigaword only 58.1 84.7
Gigaword + In-domain (100%) 60.5 89.6
DIMSUM only 62.1 94.2
DIMSUM + In-domain (50%) 68.3 95.8
DIMSUM + In-domain (100%) 70.9 96.0

Table 5: Performance of T5-large on QQPsumm
with different training configurations.

We find here that T5IMPDISTILL, purely trained on LM-generated sentences, are generally preferred than
the models trained with human-written sentences. The results imply that merely random-sampling
sentences from existing corpus may not suffice to create a high-quality dataset; generating sentences
with the right choice of LM and decoding algorithm could be a promising alternative, as the LMs are
pre-trained with an exact objective to represent the human text distribution.

3.3 Dataset Quality Evaluation

Next, we directly compare the quality of our generated dataset against conventional summarization
datasets. We use 3 human-authored datasets: Gigaword, Turk and QQPsumm as baselines, and evaluate
the diversity and usefulness of DIMSUM against them.

DIMSUM is more diverse than human-authored datasets. We explore the diversity of summa-
rization samples in DIMSUM and baseline datasets. First, we compare the summarization strategy
diversity, i.e. the diversity of pairs in terms of abstractiveness and compression ratio. In Figure 4 and
Appendix B, we plot the summarization strategy distribution of the train split in each dataset, with
ROUGE-L and compression ratio as the two axes. The plots clearly present the superior diversity of
DIMSUM than the human-authored datasets. Notably, while Gigaword consists of 4M human-written
summaries, its distribution is biased to a very specific region of abstractiveness and compression ratio.
Our dataset, despite being smaller than Gigaword, presents a well distributed set of summaries across
all region of ROUGE-L and compression ratio, providing rich supervision signal to the trained model.

In addition, we analyze the lexical diversity of each dataset in Table 4. Following [21], we gauge the
1/2/3-gram entropy and the mean segmented token type ratio (MSTTR) of sentences in each dataset.
Again, our dataset provides the largest diversity in all metrics, powered by the extensive distillation
across multiple domains.

DIMSUM better generalizes to unseen domain. To validate whether DIMSUM is helpful for
generalizing to unseen domain, we directly train T5 on Gigaword and DIMSUM, then test it on
QQPsumm. The results are shown in Table 5 (Gigaword only, DIMSUM only). Compared to the
Gigaword-trained model, the model trained on DIMSUM performs much closer to the In-domain
supervision, attesting to the generalizability of our dataset to unseen domain.

DIMSUM is effective for transfer learning. As shown in the diversity analysis, human-authored
datasets typically cover a narrow, specialized style and domain [25]; in contrast, IMPOSSIBLE DIS-
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TILLATION induces a large-scale, multi-domain dataset of sentence-summary pairs. This motivates
us to consider another use-case of DIMSUM, where the synthetic examples are used to train a general
summarizer, which can be fine-tuned to the specific style and domain of human-written benchmarks.
We validate this scenario in Table 5, by first fine-tuning T5 on either Gigaword or DIMSUM, then
further training the model on the in-domain train set of QQPsumm.

While fine-tuning on Gigaword degrades the test set performance (Gigaword + In-domain (100%)),
training on DIMSUM improves performance over purely in-domain supervised model (DIMSUM +
In-domain (100%)). Moreover, a summarizer trained on our dataset surpasses in-domain supervision,
fine-tuning on only half of the in-domain train set (DIMSUM + In-domain (50%)). This substantiates
the usefulness of our data for transfer learning, from a general task model to a specialized task model.

3.4 Ablation Study

Configuration R-L B-F1

Initial modelM1 63.3 89.1
Direct supervision on D1 69.0 93.1
No control 68.5 93.3
Summarization only 69.1 94.0

T5IMPDISTILL 69.4 93.8

Table 6: Ablation study on Turk dataset.

Does self-distillation matter? We ablate the self-
distillation of IMPOSSIBLE DISTILLATION in two ways.
First, we omit the self-distillation stage and test the initial
model M1. In this case, ROUGE-L on Turk degrades
by 10% relatively to T5IMPDISTILL, indicating the impor-
tance of self-distillation in amplifying the model capability.
Next, we consider directly fine-tuning off-the-shelf T5 on
DIMSUM+, rather than distilling M1 on this dataset. Al-
though the high-quality samples in DIMSUM+ drive com-
petitive performance in this directly-supervised model,
it stills falls behind the full T5IMPDISTILL performance,
demonstrating the effectiveness of distilling further the initial task model.

Does controllability matter? We also consider our method with no control, i.e. removing
controllability from the end-stage model. Consistent with the prior findings [18], training on the
quantized dataset yields slightly better performance than without quantization, even if we fix the
control code during test time (long-abstractive).

Can we just train a task-specific model? Finally, we remove the paraphrase generation from
the distillation pipeline and train a summarization-specific model. This Summarization only model
performs comparable to T5IMPDISTILL, which is capable of both summarization and paraphrasing.
The result shows that while it is possible to train a model for a single specific task, training on
multiple related tasks does not hurt the performance, attesting to the applicability of IMPOSSIBLE
DISTILLATION on multi-task distillation.

4 Related Work

Unsupervised Summarization / Paraphrasing Conventional approaches for unsupervised sum-
marization and paraphrasing have focused on task-specific surrogates – e.g. reconstruction of the
original text [4, 8, 80, 58] – to supervise the model toward desired output. These surrogate tasks
inherently provide a weak and sparse supervision signal compared to the complexity that the target
tasks involve, often mandating a carefully engineered train loop [37] and auxiliary loss [4, 68]. Apart
from the task-specific methods, a growing line of research seeks to harness LMs to summarize
and paraphrase without supervision [13, 6, 19, 73]. Notably, recent findings suggest that zero-shot
summaries prompted from LLMs exhibit higher quality than supervised models [23, 79].

Task-solving with Language Model More broadly, task-solving capabilities of LMs have been
tested and analyzed across domains [27]. While large-scale pre-training allows models to acquire
sufficient knowledge to solve complex tasks [7, 77, 49, 34], recent works suggest that their full
capability is elicited from aligning the model knowledge with additional fine-tuning – e.g. using
instruction data [14, 51, 69] and human feedback [81, 46] – which often requires a curated set of
annotated data. In a sense, our work shows a promising alternative to this paradigm, by amplifying
model capability based on the explicit definition of the target task, rather than human annotation.

Data Generation with Language Model Another line of related works propose to directly train mod-
els with LM-generated data, improving model reasoning [75, 28, 30], robustness [9], controllability
[61] and language understanding [74, 20, 26]. These works essentially follow the conceptual frame-
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work of Symbolic Knowledge Distillation [70], where the teacher model’s knowledge is transferred
to a student model via a symbolic, textual dataset. Other works explore to extract a standalone corpus
from LMs, spanning from knowledge base [5, 1], contextual dialogue [36], and model behavior
evaluation [54]. However, these works typically impose a strong assumption on the generator LM
[63, 16, 67], and require manually constructed set of prompts [5]. Overcoming these limitations, IM-
POSSIBLE DISTILLATION generalizes data generation into a multi-task, off-the-shelf setup, removing
the dependence to the underlying model’s capability for data generation. In effect, we show that small
LMs can be harnessed to generate a high-quality, reusable dataset for multiple tasks at hand.

5 Conclusion

In this work, we propose IMPOSSIBLE DISTILLATION, a novel distillation framework that signifi-
cantly improves LM capability by accurately searching and amplifying its task-specific knowledge.
We empirically show that IMPOSSIBLE DISTILLATION can empower small LMs to outperform their
gigantic counterparts in both generation quality and controllability, across domains and tasks, without
supervision. Also, DIMSUM+, the natural byproduct of our method, presents higher diversity and
usability than human-authored baselines. IMPOSSIBLE DISTILLATION shows a promising direction
to rediscover the under-explored capabilities of off-the-shelf language models, without resorting to
external resource or extra supervision.

As with any distillation technique, IMPOSSIBLE DISTILLATION carries potential risk of amplifying
undesirable properties of language models. While we focus on conditional generation tasks where
the output is closely bound to the input, the trained model could inherit the bias and toxicity of its
teacher in a more open-ended setting. Nonetheless, IMPOSSIBLE DISTILLATION distills knowledge
into a symbolic, textual dataset – which can be interpreted and evaluated, allowing users to intervene
in the distillation process and selectively filter which knowledge to be amplified. The inherent
transparency of IMPOSSIBLE DISTILLATION, when incorporated with recent techniques for automatic
bias detection and reduction, could empower safer knowledge transfer between language models.
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A Implementation Details

A.1 Generating pairs

IMPOSSIBLE DISTILLATION generates each candidate pair in 3 domains using an off-the-shelf LM
for the respective domain: GPT-2 (news), CTRL (reddit), and BioGPT (biomedical). Here, we first
generate 1-5 sentences from each LM as the contextual constraint ci. For reddit and biomedical
domain, this process is straightfoward as the two LMs are pre-trained to generate sentences in the
corresponding domain: for CTRL, we use the predefined control codes for reddit-style generation (e.g.
(r/Gaming)), and for BioGPT, we free-form generate without any prefix given. For CTRL control
codes, we refer the readers to the original paper [35]. With GPT-2, we find that formatting a simple
prefix including a city and a media name (e.g. London, (CNN) –) suffices to generate high-quality
news-style sentences without domain adaptation.

For sequential pair generation, we use KeyBERT [24], an off-the-shelf keyword extracting library
to extract at most 5 keywords from each sentence x, and generate k1 = 10 summaries per x. For
parallel pair generation, we set k2 = 100 and τp = 0.7. Since the decoding process leverages a
shared prefix ci to generate a large pool of candidate pairs, the computation is highly parallelizable,
and we use 8 Quadro RTX 8000 GPUs to run all our experiments.

A.2 Filtering for high-quality pairs

For the entailment filter, we use RoBERTa-large [42] fine-tuned on WANLI [41] as the NLI model,
and set τentail = 0.9 to ensure only the pairs with strong entailment are filtered. For summarization,
we set τcomp_ratio = 0.8, such that the summary has at most 80% number of tokens compared to the
original sentence. For paraphrasing, we constrain the length of y to be in the range of 80% ∼ 150%
of the original length , i.e. τcomp_ratio,1 = 0.8 and τcomp_ratio,2 = 1.5. Also, we use τabstract = 0.6 in
the abstractiveness filter for paraphrase generation.

Finally, we present the formal algorithm of the diversity filter in Algorithm 1. We first create an
undirected graph G where pairs are nodes and edges exist between duplicate pairs, then find the set S
of all connected components in G. By discarding all but the one with the maximal entailment score
in each component, we effectively remove the duplicate pairs in the candidate pool. As the duplicate
pair search with NLI model is parallelizable, the time complexity follows that of the connected
component search, i.e. O(|P |+ |E|) when using DFS-based algorithm [64].

Algorithm 1 Diversity Filter

Input: A set of pairs Pin = {(x1, y1), · · · , (x|P |, y|P |)} generated using the same prefix c
Output: Filtered set of pairs Pout

E ← ∅
for i, j ∈

[
1, |P |

]
, i ̸= j do // search for duplicate pairs

if PNLI(xi ⇒ xj) > τentail then
E ← E ∪ {(xi, yi), (xj , yj)}

else if PNLI(yi ⇒ yj) > τentail then
E ← E ∪ {(xi, yi), (xj , yj)}

end if
end for
G← (Pin, E) // define a graph where nodes are pairs and edges connect duplicate pairs
S ← Connected-Components(G)
Pout ← ∅
for C ∈ S do // find the max-entailing pair in each connected component

pout = argmax(x,y)∈CPNLI(x⇒ y)

Pout ← Pout ∪ {pout}
end for

A.3 Quantizing dataset for controllability

Prior to training the task model in each stage, we quantize the generated dataset into 5 groups: {long
/ short}-{abstractive / extractive} summaries, and paraphrases. To represent each pair (x, y) in terms
of length and abstractiveness, we first quantify the compression ratio and surface-form similarity
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between x and y:

comp(x, y) =
|y|
|x|

, sim(x, y) = max
(
Density(x, y),ROUGE-L(x, y)

)
(11)

Then, we group each pair in the dataset to be one of the 5 groups below based on the two metrics.

• Short-Abstract Summary : comp(x, y) < 0.5, sim(x, y) < 0.6

• Short-Extractive Summary: comp(x, y) < 0.5, sim(x, y) ≥ 0.6

• Long-Abstract Summary: 0.5 ≤ comp(x, y) < 0.8, sim(x, y) < 0.6

• Long-Extractive Summary: 0.5 ≤ comp(x, y) < 0.8, sim(x, y) ≥ 0.6

• Paraphrase: 0.8 ≤ comp(x, y) < 1.5, sim(x, y) < 0.6

This way, we not only train a multi-task model capable of controllable summarization and paraphras-
ing, but also obtain a large-scale dataset covering diverse summarization strategy, as illustrated in
Appendix B.

B Dataset Evaluation
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Figure 5: Distribution of summarization strategy in QQPsumm (left), Turk (right).

Dataset Short-
Abstractive

Short-
Extractive

Long-
Abstractive

Long-
Extractive Paraphrase Total

Gigaword 3.54M 60k 168k 17k 18k 3.8M
QQPsumm 4.8k 1k 29.3k 15.2k - 50.3k
QQPpara - - - - 68.7k 68.7k

DIMSUM+ 574k 197k 711k 648k 1.33M 3.46M

Table 7: Number of examples for each pair type in the train split of D1, Gigaword, and QQP.

In Figure 5, we additionally plot the summarization strategy distribution of QQPsumm and Turk dataset.
Since Turk does not provide the train split, we plot the distribution of the valid and test split of the
dataset. Compared to DIMSUM+, these human-authored datasets exhibit relatively concentrated
region of the summarization strategy space.

In Table 7, we also compare the number of examples for each pair type in the train split of DIMSUM+,
Gigaword, and QQP. In Gigaword, majority of the examples represent short and abstractive summaries,
as the dataset is constructed by collecting news headlines as proxies for sentence-level summaries.
We also find that Gigaword includes 18k examples where the output is longer than 80% the length
of the input, despite the dataset being a sentence summarization benchmark. Compared to the
human-authored datasets, our dataset presents a large-scale, well-distributed set of pair types for
summarization and paraphrasing.
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C Controllability Evaluation

Attribute Length (Comp. Ratio) Abstractiveness (ROUGE-L)

Model Long Short ∆ Extractive Abstractive ∆

GPT-3few-shot 1.07 0.88 0.19 56.2 54.0 2.2
Flan-T5few-shot 0.62 0.29 0.33 65.1 52.3 12.8
T5IMPDISTILL 0.72 0.48 0.23 77.1 51.3 25.8

Table 8: Experimental results on controllable summarization.

In this section, we compare the controllability of T5IMPDISTILL against few-shot prompted GPT-3 and
Flan-T5 across summary length and abstractiveness. Using Turk dataset, we instruct each model to
generate 4 types of summaries with instruction: “Generate {long / short}, {abstractive
/ extractive} summary of the given sentence:”. To better guide the baseline models to
the control instruction, we manually construct 5 few-shot examples for each summary group and
append them to the instruction. We report the average compression ratio for long / short summaries
and ROUGE-L of extractive / abstractive summaries from each model in Table 8.

Our model, explicitly trained with the quantized dataset, shows significantly more controllability then
few-shot instructed LMs. Notably, GPT-3, when instructed to generate long summary, records mean
compression ratio of 1.07 (i.e. generates longer summary then the original sentence on average). Flan-
T5 shows better controllability over length, but still falls behind the abstractiveness control compared
to our model. These results imply that while instructions and few-shot examples could signal some
degree of control over the LM generations, they may not suffice to control more sparse and fine-
grained properties of generations. IMPOSSIBLE DISTILLATION could be an effective alternative to
these methods, as it allows control over any type of quantizable property, by generating a large pool
of train samples and grouping them based on the desired property.

D Pair Generation Analysis

Generation Process Sample Efficiency Average ROUGE-L

Sequential Generation 0.32 75.5
Parallel Generation 1.15 58.6

Table 9: Sample efficiency and average ROUGE-L of generated pairs in sequential and parallel
generation process.

In Table 9, we analyze the difference between the sequential generation and parallel generation
in IMPOSSIBLE DISTILLATION. We first investigate the sample efficiency of each pair generation
process, defined as the number of pairs that pass the summarization filters, divided by the number of
contextual constraint cis used to generate them.

From 150k cis, sequential generation yields 48k sentence-summary pairs, marking the sample
efficiency of 0.32. Meanwhile, parallel generation yields 172k pairs, hence the sample efficiency
of 1.15. Note that in our experiment, we generate different number of candidate pairs from the
two generation process, i.e. we used k1 = 10 for sequential generation and k2 = 100 for parallel
generation. Therefore, the likelihood of a single pair passing the filter is actually higher in sequential
generation than parallel generation. However, we empirically find that enlarging k1 does not help in
improving sample efficiency of sequential generation, as the beam-search based generations lacks
diversity even with the larger beam size [65]. In contrast, parallel generation induces more than 1
pair per each ci on average, thanks to the diversity of sentences enabled by stochastic decoding and
larger sample size.

Next, we compare the average ROUGE-L between x and y in each generated pair. Sequential
generation yields more extractive summaries than parallel generation, contributing to the overall
coverage of summarization strategy in the generated dataset.
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E Pair Generation Examples

Sequential Pair Generation (Summarization)

Left
Context c

There had been fears the flare could ignite the escaping gas at the Elgin platform, about 150
miles (240 km) east of the Scottish city of Aberdeen, potentially causing a huge explosion.
Total said it had received the first indication that the flare might be out at lunchtime on Friday.
The firm is “mobilizing all means to allow these options to be implemented," it said. The
company, which is still investigating the cause of the leak, estimates that 200,000 cubic meters
of gas a day are escaping.

Sentence x
“The gas cloud is fairly small in size and prevailing winds are blowing it away from the
platform and dispersing it,” Total said.

Keywords
keyword(x)

gas, cloud, small, blowing, Total

Summary y The gas cloud is small and blowing away, Total said.

Sequential Pair Generation (Paraphrasing)

Left
Context c

The impact of obesity on health-related quality of life (HRQOL) in adolescents and young
adults with spinal deformity is not well described.

Sentence x
The purpose of this study was to compare HRQOL measures in adolescent idiopathic scoliosis
(AIS) patients with and without obesity.

Keywords
keyword(x)

HRQQL, idiopathic, AIS, obesity

Paraphrase y
This study aimed to investigate the relationship between HRQOL and obesity in adolescents
with idiopathic scoliosis (AIS).

Parallel Pair Generation (Summarization)

Left
Context c

A banana primarily consists of carbo hydrate chains (sugar), but also contains some minor
amount of minerals and vitamins. Let’s see what happens with this stuff - Sugar: Will be
broken down to either be stored as fat (another form of carbo hydrate chains) or broken up
and used to provide cell energy; the resulting "waste" hydrogen and carbon is disposed of
in form of CO2 or H2O. Minerals: Are mainly used to regenerate organs/tissue and other
organ functions; these could probably be still in your body, but even if they are, they are
probably very rare. Vitamins: The atoms are very often disposed after use, so they too leave
your body. I am no expert, so i cant́ give you an answer as to whether they leave through
urine or excrements.

Sentence x
They do leave in rather short time frames, because the body can’t store them well and needs
it daily (that is why your diet should include them).

Summary y They do leave in a short time, but the body does not store them long.

Parallel Pair Generation (Paraphrasing)

Left
Context c

As part of the process for the upcoming release of the Android M, Google is also adding a
new camera API to the latest Android OS.

Sentence x This API allows third-party apps to use the camera of Android devices.

Paraphrase y The new API will allow developers to use Android’s camera features to create custom apps.

Table 10: Examples of constrained pair generation.
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F Qualitative Examples

Sentence
Limitation of heat losses (due to the constriction of subcutaneous blood vessels) together
with activation of the metabolism in muscles and other tissues provide for significant heat
accumulation and the increase in body temperature of arousing ground squirrels.

PEGASUS
(supervised) heat loss in squirrels linked to constriction of blood vessels

T5
(supervised) study finds squirrel metabolism may be linked to heat loss

GPT-3
(few-shot)

Studies found that body temperature, heat losses during arousal, due to the constriction of
subcutaneous blood vessels.

GPT-3
(zero-shot)

The sentence discusses how the limitation of heat losses, along with the activation of
metabolism, causes significant heat accumulation and an increase in body temperature of
arousing ground squirrels.

T5IMPDISTILL

The heat accumulation and the increase in body temperature of arousing ground squirrels
are due to the reduced heat loss from the subcutaneous blood vessels and the increased
metabolism of the muscles.

Sentence

In the case of life-sentence prisoners, the victim can obtain information about the minimum
number of years the life prisoner must serve, when the life prisoner is being considered
for release and have the opportunity to give views when the prisoner is considered for final
release.

PEGASUS
(supervised) victims of life-sentence prisoners to have more rights

T5
(supervised) victim can obtain information about life-sentence prisoner

GPT-3
(few-shot)

Victims can receive information about a prisoner’s release, conditions, and breaches of those
conditions, as well as information about life-sentence prisoners and their potential release.

GPT-3
(zero-shot)

The Victim Information Scheme allows victims to receive details about the convicted person,
their temporary release, the conditions of their release, and their expected release date, as
well as information about life-sentence prisoners and the opportunity to give views when
they are considered for final release.

T5IMPDISTILL

In the case of life-sentence prisoners, the victim will be able to access the information
about the minimum number of years the prisoner must serve, the date of the release and the
opportunity to give their views.

Sentence
Using the wrong version of “too” doesn’t automatically mean he’s an ESL speaker, because
too many native-speakers (from around the planet) get that wrong all the time, which I was
politely (if sarcastically) pointing out.

PEGASUS
(supervised) the wrong version of “too” doesn’t mean he’s all speaker

T5
(supervised) too many native speakers get that wrong time

GPT-3
(few-shot)

I was sarcastically pointing out that using the wrong version of "too" doesn’t mean someone
is an ESL speaker, as native speakers make this mistake often.

GPT-3
(zero-shot)

The speaker is pointing out that using the wrong version of "too" does not automatically
mean someone is an ESL speaker, as native speakers from around the world make this
mistake frequently.

T5IMPDISTILL
Using the wrong version of "too" doesn’t necessarily mean he’s an ESL speaker, because a
lot of native-speakers make that mistake.

Table 11: Example summaries from T5IMPDISTILL, supervised baselines (PEGASUS and T5 fine-tuned
on Gigaword), and unsupervised baselines (few-shot / zero-shot prompted GPT-3).
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G Limitations

In this work, we limit our experiments to summarizing and paraphrasing a given sentence. In future
works, IMPOSSIBLE DISTILLATION could be applied to a broader range of tasks, e.g. translation. To
generate a parallel corpus for translation without human supervision, IMPOSSIBLE DISTILLATION
could leverage the strong capability of recently-proposed multilingual LMs [39, 71] and cross-lingual
filters [15]. Another direction would be to adapt IMPOSSIBLE DISTILLATION for longer input-output
pairs, e.g. for paragraph-level summarization. A potential strategy here could be first generating the
input article, then sequentially generating zero-shot summaries of the article with a fixed separator
(e.g. tl;dr, [56]). As such, IMPOSSIBLE DISTILLATION could be extended to diverse range of tasks
by re-defining the pair generation constraints and task-specific filters.

IMPOSSIBLE DISTILLATION makes use of a fixed set of filters (e.g. off-the-shelf NLI model) to
determine which pair qualifies as a high-quality sample. Throughout the distillation pipeline, these
filters remain frozen. Although our experiments show that the frozen filters are strong enough to
distill a high-quality dataset than human-authored corpora, such filters may not always be accessible
in wider range of tasks. Hence, future works could improve the framework by learning not only the
task model that generates candidate pairs, but also the filter model that scores the plausibility of a
given pair. We envision that by co-evolving the task model and filter model throughout the distillation
stages, our framework could generalize to more complex problems such as commonsense reasoning,
where it is non-trivial to define which pairs qualify as good task example.

H Human Evaluation Details

For human evaluation, we sample 300 sentences from XSUM, TL;DR and PubMed, then generate
corresponding summaries from all methods. With an IRB approval, we recruit annotators from
Amazon Mechanical Turk (MTurk), and ensure that all summaries are annotated by 3 distinct
evaluators. To minimize subjectivity, we use 3-point Likert scale where annotators evaluate the
fluency (whether the summary exhibits fleunt language), faithfulness (whether the summary well
preserves the content of the original sentence and does not hallucinate), and conciseness (whether the
summary is succinct enough) of each summary. We compensate workers with the hourly wage of
$15.

Figure 6: Screenshot of MTurk interface used for the human evaluation of model generated summaries.
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