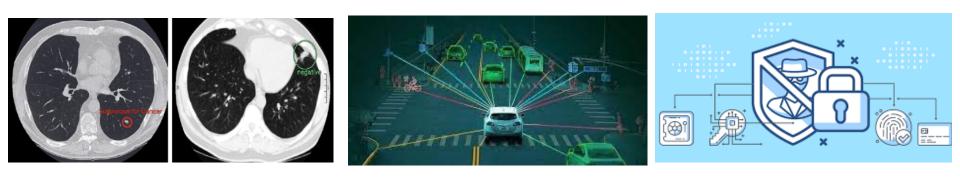
Statistical and Computational Guarantees for Influence Diagnostics

Jillian Fisher¹, Lang Liu¹, Krishna Pillutla², Yejin Choi^{3,4}, and Zaid Harchaoui¹

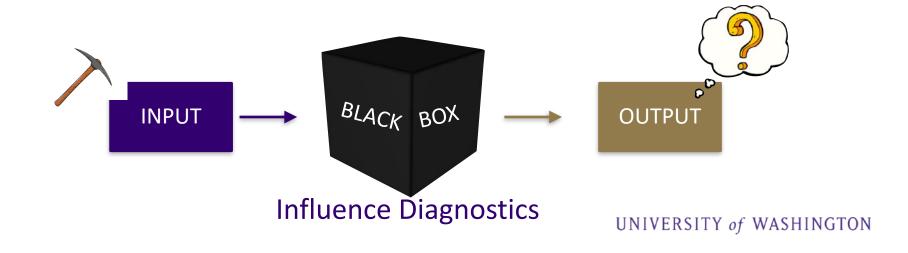
¹Department of Statistics, University of Washington, ²Google Research, ³Paul G. Allen School of Computer Science & Engineering, University of Washington, ⁴Allen Institute for Artificial Intelligence

Motivation

We rely on models for important tasks...



But how do we know we can trust these models?



Contributions

- 1. Provide <u>finite-sample bounds</u> on empirical influence functions for generalized linear models.
- 2. Achieve <u>computational accuracy bounds</u> on empirical influence functions computed using deterministic Krylov-based methods and stochastic optimization based methods.
- 3. Provide similar guarantees for <u>maximum subset influence</u> owing to a novel Superquantile interpretation.
- 4. Show <u>numerical illustrations of our theoretical bounds</u> on synthetic data and real data, with generalized linear models and large attention based models.

Outline

- Background
- Statistical Finite Bound
- Computational Bound
- Most Influential Subset
- Experiments

Background: Notation

Setting: Consider $\theta \in \Theta$, constructed from i.i.d sample $z = \{(x_i, y_i)\}_{i=1}^n$

True Parameter

$$\theta_{\star} \colon = \underset{\theta \in \Theta}{\arg \min} \; \mathbb{E}_{Z \sim P} \big[\ell(Z, \theta) \big]$$

Estimator

$$\theta_n := \underset{\theta \in \Theta}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^n \ell(Z_i, \theta)$$

Perturbed Estimator:

$$\theta_{n, \, \epsilon, \, z} := \arg\min_{\theta \in \Theta} \left\{ (1 - \epsilon) \frac{1}{n} \sum_{i=1}^{n} \ell \left(Z_i, \, \theta \right) + \epsilon \ell(z, \theta) \right\}$$
Empirical Risk Loss at 1 point

$$\varepsilon = \frac{-1}{n}$$
 removing one point

Background: Notation

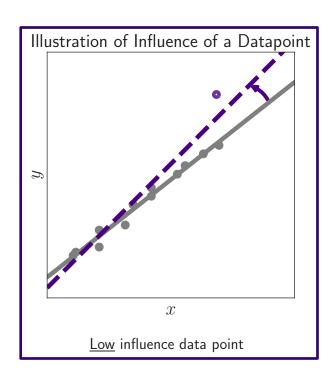
Influence Function: quantify the influence of a fixed data point z on an estimator θ_n

$$I_n(z) = \frac{d\theta_{n,\epsilon,z}}{d\epsilon} \approx \frac{\theta_{n,\epsilon,z} - \theta_n}{\epsilon}$$

Cook and Weisberg Formula

$$I_n(z) = -H_n(\theta_n)^{-1} \nabla \mathcal{E}(z, \theta_n)$$

where $H_n(\theta_n)$ is the empirical Hessian



Outline

- Background
- Statistical Finite Bound
- Computational Bound
- Most Influential Subset
- Experiments

Assumptions: Pseudo Self-Concordance

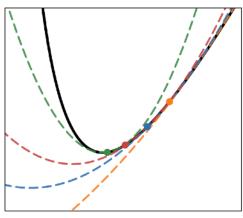
1. Simple definition if we assume *linear prediction models* (i.e. $\ell(\theta) = \ell(Y, X^T\theta)$).

We consider $\ell(\theta)$ is pseudo self-concordant if

$$|\nabla^3 \mathcal{E}(z,\theta)| \le \nabla^2 \mathcal{E}(z,\theta)$$

Prevents $\nabla^2 \ell(z,\theta)$ from changing too quickly with θ

Illustration of Pseudo Self-Concordance Function



Black curve: population function; colored dot: reference point; colored dashed curve: quadratic approximation at the corresponding reference point.

Useful Consequence: Spectral Approximation of the Hessian

$$\frac{1}{2}H(\theta') \le H(\theta) \le 2H(\theta') \text{ for } \theta \text{ close to } \theta'$$

Assumptions

2. Normalized gradient $H(\theta_\star)^{-1/2} \nabla \ell(Z,\theta_\star)$ at θ_\star is sub-Gaussian with parameter K_1

Since $\mathbb{E}[\,\nabla \ell(Z,\theta_\star)]=0$, then Assumption 2 gives a high prob. bound on $\|\nabla \ell(Z,\theta_\star)\|_{H_\star}^{-1}$

3. There exist $K_2>0$ such that the standardized Hessian at θ_\star satisfies a Bernstein condition with parameter K_2

Moreover,

$$\sigma_H^2 := \|\operatorname{Var}(H(\theta_\star)^{-1/2} \nabla^2 \mathscr{C}(Z, \theta_\star) H(\theta_\star)^{-1/2})\|_2 \text{ is finite.}$$

Assumption 3 gives spectral concentration

$$(1/2)H(\theta) < H_n(\theta) < 2H(\theta)$$

Results: Statistical Bound

Theorem 1. Suppose the assumptions hold and

$$n \ge C \left(\frac{p}{\mu_{\star}} \log \frac{1}{\delta} + \log \frac{p}{\delta} \right)$$

where $\mu_{\star} = \lambda_{\min}(H(\theta_{\star}))$.

Then, with probability at least $1-\delta$, we have $\frac{1}{4}H(\theta_\star) \leq H_n(\theta_n) \leq 3H(\theta_\star)$ and

$$||I_n(z) - I(z)||_{H_{\star}}^2 \le C \frac{p_{\star}^2}{\mu_{\star} n} \text{poly log}\left(\frac{p}{\delta}\right)$$

- Only <u>logarithmic</u> dependence on p
- p_{\star} is the degrees of freedom (model misspecification)
- Rate of 1/n

Outline

- Background
- Statistical Finite Bound
- Computational Bound
- Most Influential Subset
- Experiments

Computational Challenge

Cook and Weisberg Formula

$$I_n(z) = -H_n(\theta_n)^{-1} \nabla \mathcal{E}(z, \theta_n)$$

Can't be computed for large values of p

Instead use iterative algorithms to approximately minimize

$$g_n(\mu) \coloneqq \frac{1}{2} \langle \mu, H_n(\theta_n) \mu \rangle + \langle \nabla \ell(z, \theta_n), \mu \rangle$$

Algorithms

- > Conjugate Gradient (CG)
- > Stochastic Gradient Descent (SGD)
- > Stochastic Variance Reduced Gradient (SVRG)
- > Arnoldi Low Rank

Result: Computational Bound

Proposition 1. Consider the setting of Theorem 1, and let $\mathscr G$ denote the event under which its conclusions hold. Let $\hat I_n(\theta)$ be an estimate of $I_n(\theta)$ that satisfies

$$\mathbb{E}_{Z_{1:n}}\left[\left\|\hat{I}_n(z) - I_n(z)\right\|_{H_n(\theta_n)}^2\right] \leq \epsilon.$$

Then

$$\mathbb{E}_{\mathscr{G}}\left[\left\|\hat{I}_n(z) - I(z)\right\|_{H(\theta_{\star})}^2\right] \le 8\epsilon + C \frac{p_{\star}^2}{\mu_{\star} n} \text{poly log} \frac{p}{\delta}$$

- Translating approx. error in $H_n(\theta_n)$ -norm to the H_{\star} -norm under $\mathcal G$ (Theorem 1)
- **Total Error** under $O(\epsilon)$ is $O(n(\epsilon)T(\epsilon))$

Result: Global Bounds

Method	Computational Error	Total Error
Conjugate Gradient	$n\sqrt{\kappa_n}$	$\frac{\kappa_{\star}^{3/2}p_{\star}^{2}}{\epsilon}$
Stochastic Gradient Descent	$\frac{\sigma_n^2}{\epsilon} + \kappa_n$	$\frac{\sigma_{\star}^2}{\epsilon} + \kappa_{\star}$
Stochastic Variance Reduction Gradient	$(n + \kappa_n)$	$ \kappa_{\star} \left(1 + \frac{p_{\star}^2}{\epsilon} \right) $
Accelerated Stochastic Variance Reduction Gradient	$(n+\sqrt{n\kappa_n})$	$\kappa_{\star} \left(\sqrt{\frac{p_{\star}^2}{\epsilon}} + \frac{p_{\star}^2}{\epsilon} \right)$

Outline

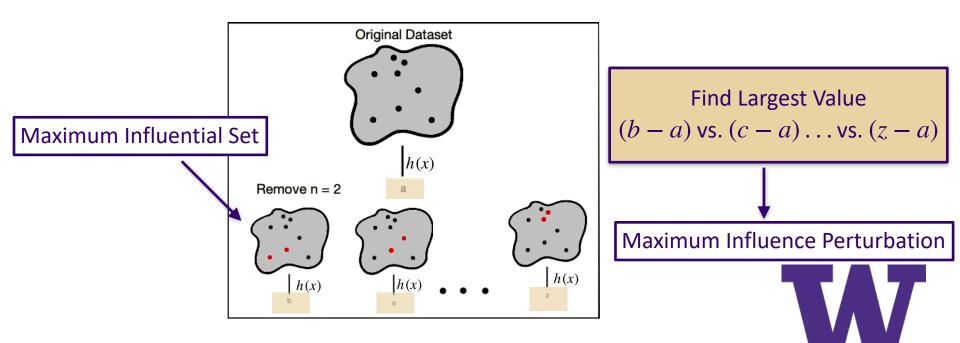
- Background
- Statistical Finite Bound
- Computational Bound
- Most Influential Subset
- Experiments

MIS: Definition

Most Influential Subset

•Given an $\alpha \in (0,1)$, and a test function $h: \mathbb{R}^p \to \mathbb{R}$

Most influential set is the subset of data (size at most αn), which when removed leads to largest increase in the test function.



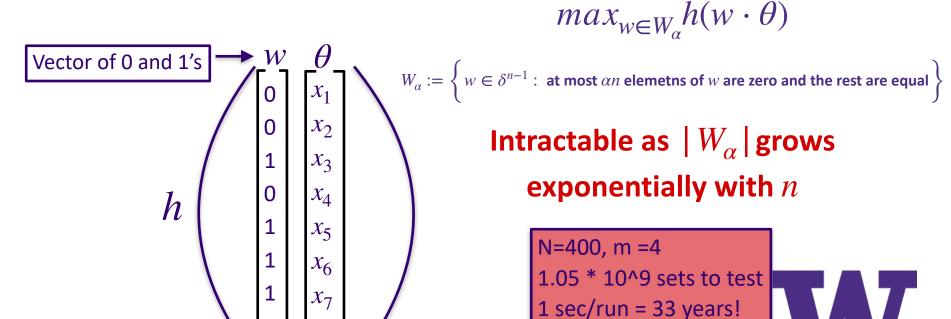
MIS: Definition

Most Influential Subset

•Given n $\alpha \in (0,1)$, and a test function $h: \mathbb{R}^p \to \mathbb{R}$

Most influential subset is the subset of data (size at most αn), which when removed leads to largest increase in the test function.

Mathematically,



MIS: Definition

Instead Broderick et al. (2020) use linear approximation

$$h(\theta_{n,w}) \approx h(\theta_n) + \left\langle w - \frac{\mathbf{1}_n}{n}, \nabla_w h(\theta_n, w) \big|_{w = \mathbf{1}_n / n} \right\rangle$$

Which leads to the influence of the most influential subset,

$$I_{\alpha,n}(h) := \max_{w \in W_{\alpha}} \left\langle w, \nabla_{w} h(\theta_{n}, w) |_{w = \mathbf{1}_{n}/n} \right\rangle$$

Which can be simplified using the implicit function theorem and the chain rule to a closed form

$$I_{\alpha,n}(h) := \max_{w \in W_{\alpha}} \sum_{i=1}^{n} w_i v_i$$

 $I_{\alpha,n}(h) := \max_{w \in W_{\alpha}} \sum_{i=1}^{n} w_i v_i$ Greedy algorithm that zeros out the largest αn entries of v_i 's!

Where
$$v_i = -\langle \nabla h(\theta_n), H_n(\theta_n)^{-1} \nabla \ell(Z_i, \theta_n) \rangle$$

Assumptions: MIS

Strengthen Assumptions

- 1. For any $z \in \mathbb{Z}$, the loss function $\ell(z, \cdot)$ is \mathbb{R} -pseudo self-concordant
- 2. Normalized gradient is bounded as $\left\| \nabla \mathcal{C}(z,\theta) \right\|_{H_{\star}^{-1}} \leq M_1$ for all

$$\left\|\theta - \theta_{\star}\right\|_{H_{\star}} \le \rho$$

- 3. Normalized Hessian is bounded $\left\|H_{\star}^{-\frac{1}{2}}\nabla^{2}\ell(z,\theta)H_{\star}^{-\frac{1}{2}}\right\|_{2} \leq M_{2}$ for all $\left\|\theta-\theta_{\star}\right\|_{H_{\star}} \leq \rho$
- 4. Test function h is bounded as $\left\| \left.
 abla \mathbf{h}(\theta) \right\|_{H_{\star}^{-1}} \leq M_1'$ and

$$\left\|H_{\star}^{-\frac{1}{2}}\nabla^{2}h(\theta)H_{\star}^{-\frac{1}{2}}\right\|_{2} \leq M_{2}' \text{ for all } \left\|\theta-\theta_{\star}\right\|_{H_{\star}} \leq \rho$$

Main Results: Most Influential Subset

Theorem 2. Suppose the added assumptions hold and the sample size n satisfies the condition in Theorem 1.

Then with probability at least $1-\delta$

$$\left(I_{\alpha,n}(h) - I_{\alpha}(h)\right)^{2} \leq \frac{C_{M_{1},M_{2},M'_{1},M'_{2}}}{\left(1 - \alpha\right)^{2}} \frac{R^{2}p_{\star}}{\mu_{\star}n} \log \frac{n \vee p}{\delta}$$

- Only logarithmic dependence on p
- p_{\star} is affine-invariant
- $\frac{1}{n}$ rate

Outline

- Background
- Statistical Finite Bound
- Computational Bound
- Most Influential Subset
- Experiments

Experiment: Simulation

Simulation

 $x \sim N(0,1)$

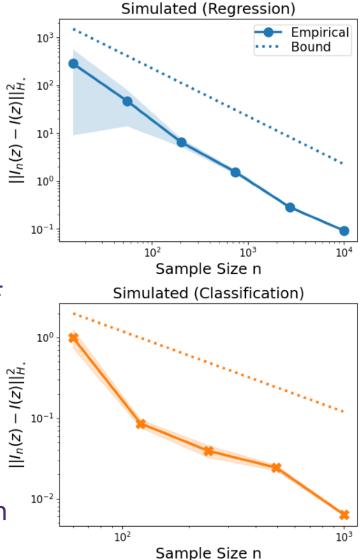
Linear (Ridge) Regression

Logistic Regression

Y-axis: Difference in empirical vs. population IF

Results

- See 1/n of our bound observed
- Straight line in log-log scale
- Hard to approximate classification population



Experiment: Real Dataset

Real Dataset

Cash Transfer

Total consumption (regression)

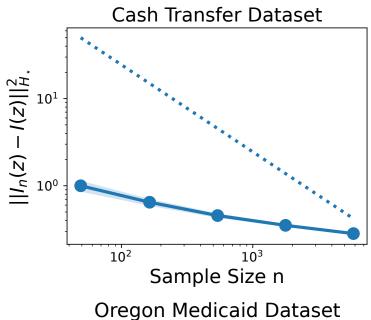
Oregon Medicaid

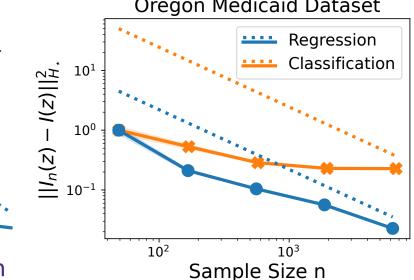
- Estimate overall health (classification)
- Number of good days (regression)

Y-axis: Difference in empirical vs. population IF

Results

- See 1/n of our bound observed
- Straight line in log-log scale
- Hard to approximate classification population





Experiment: Non-Convex

NLP (non-convex)

Question Answering

- Response: factual correct answer
- zsRE dataset (Levy et. al., 2017)/BART-base model

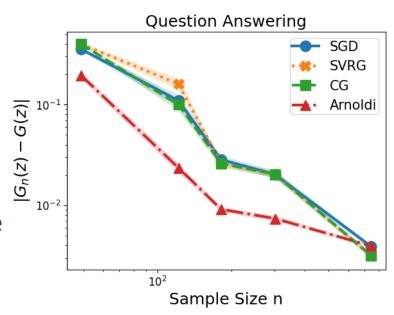
Text Continuation

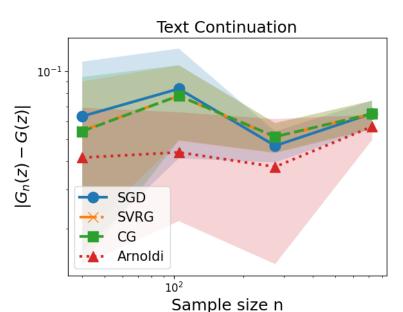
- Response: 10 tokens continuation
- WikiText (Merity et. al., 2017)/GPT2

Y-axis: Different in empirical vs. population influence on test set

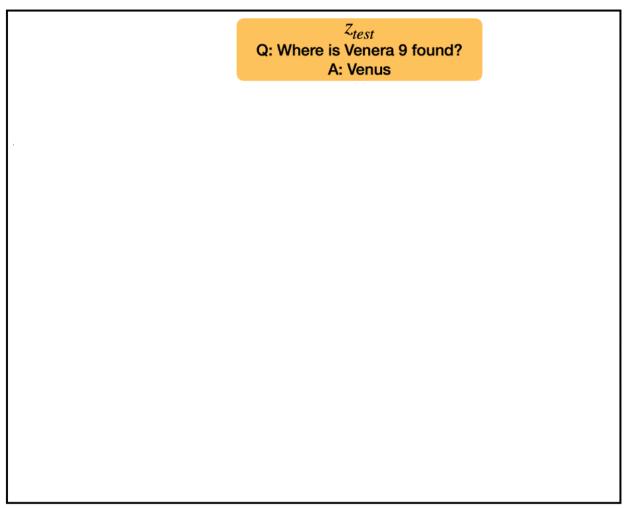
Results

Text continuation = open space





Experiment: Most Influential Subset



The star Palomar 2 is a part of the constellation named what? The star NGC 4349-127 is part of what constellation? ...

Conclusion and Future Extensions

Conclusion

- Presented statistical and computational guarantees for influence functions for generalized linear models
- Established the statistical consistency of most influential subsets method (Broderick et at., 2020) together with non-asymptotic bounds
- •Illustrated our results on simulated and real datasets (see paper).

Future Extension

- Non-convex penalized M-estimation
- Non-smooth penalized M-estimation

Thank You!

Full Paper

References

R. Cook and S. Weisberg. Residuals and influence in regression. New York: Chapman and Hall, New York: Chapman Hall, 1982.

T. Broderick, R. Giordano, and R. Meager. An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference? arXiv Preprint, 2020

D. M. Ostrovskii and F. Bach. Finite-sample analysis of M-estimators using self-concordance. Electronic Journal of Statistics, 15(1), 2021

Appendix Slides

Algorithms: Conjugate Gradient

Algorithm 1 Conjugate Gradient Method to Compute the Influence Function

Input: vector v, batch Hessian vector product oracle $HVP_n(u) = H_n(\theta_n)u$, number of iterations T

- 1: $u_0 = 0$, $r_0 = -v HVP_n(u_0)$, $d_0 = r_0$
- 2: for t = 0, ..., T 1 do
- $lpha_t = \frac{d_t^ op r_t}{d_t^ op \mathsf{HVP}_n(d_t)}$
- 4: $u_{t+1} = u_t + \alpha_t d_t$
- 5: $r_{t+1} = -v \text{HVP}_n(u_{t+1})$ 6: $\beta_t = \frac{r_{t+1}^\top r_{t+1}}{r_t^\top r_t}$
- 7: $d_{t+1} = r_{t+1} + \beta_t d_t$
- 8: **return** u_T

Algorithms: Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent Method to Compute the Influence Function

```
Input: vector v, Hessian vector product oracle \mathsf{HVP}(i,u) = \nabla^2 \ell(z_i,\theta_n) u, number of iterations T, learning rate \gamma
1: u_0 = 0
2: for t = 0, ..., T - 1 do
3: Sample i_t \sim \mathsf{Unif}([n])
4: u_{t+1} = u_t - \gamma(\mathsf{HVP}(i_t, u_t) + v)
5: return u_T
```

Algorithms: Stochastic Variance Reduction Gradient

Algorithm 4 Stochastic Variance Reduced Gradient Method to Compute the Influence Function

```
Input: vector v, Hessian vector product oracle \mathsf{HVP}(i,u) = \nabla^2 \ell(z_i,\theta_n) u, number of epochs S, number of iterations per epoch T, learning rate \gamma
```

```
\begin{array}{lll} 1: \ u_{T}^{(0)} = 0 \\ 2: \ \textbf{for} \ s = 1, 2, ..., S \ \textbf{do} \\ 3: & u_{0}^{(s)} = u_{T}^{(s-1)} \\ 4: & \tilde{u}_{0}^{(s)} = \frac{1}{n} \sum_{i=1}^{n} \text{HVP}(u_{0}^{(s)}) - v \\ 5: & \textbf{for} \ t = 0, ..., T - 1 \ \textbf{do} \\ 6: & \text{Sample} \ i_{t} \sim \text{Unif}([n]) \\ 7: & u_{t+1}^{(s)} = u_{t}^{(s)} - \gamma(\text{HVP}(i_{t}, u_{t}^{(s)}) - \text{HVP}(i_{t}, u_{0}^{(s)}) + \tilde{u}_{0}^{(s)}) \\ 8: \ \textbf{return} \ u_{T}^{(S)} \end{array}
```

Algorithms: Arnoldi

```
Algorithm 5 Arnoldi Method to Compute the Influence Function (Schioppa et al., 2022)
```

```
Input: vector v, test function h, initial guess u_0, batch Hessian vector product oracle HVP_n(u) = H_n(\theta_n)u, number of top
     eigenvalues k, number of iterations T
Output: An estimate of \langle \nabla h(\theta), H_n(\theta_n)^{-1} v \rangle
 1: Obtain \Lambda, G = ARNOLDI(u_0, T, k)

    Cache the results for future calls

 2: return \langle G\nabla h(\theta), \Lambda^{-1}Gv\rangle
 3: procedure ARNOLDI(u_0, T, k)
          w_0 = 1 = u_0 / \|u_0\|_2
         A = \mathbf{0}_{T+1 \times T}
 5:
          for t = 1, ..., T do
 6:
               Set u_t = \text{HVP}_n(w_t) - \sum_{i=1}^t \langle u_t, w_i \rangle w_i
 7:
               Set A_{j,t} = \langle u_t, w_j \rangle for j = 1, ..., t and A_{t+1,t} = ||u_t||_2
 8:
               Update w_{t+1} = u_t/\|u_t\|
 9:
          Set \tilde{A} = A[1:T,:] \in \mathbb{R}^{T \times T} (discard the last row)
10:
          Compute an eigenvalue decomposition \tilde{A} = \sum_{j=1}^{T} \lambda_j e_j e_j^{\top} with \lambda_j's in descending order
11:
          Define G: \mathbb{R}^p \to \mathbb{R}^k as the operator Gu = (\langle u, W^\top e_1 \rangle, \cdots, \langle u, W^\top e_k \rangle), where W = (w_1^\top; \cdots; w_T^\top) \in \mathbb{R}^{T \times p}
12:
          return diagonal matrix \Lambda = \text{Diag}(\lambda_1, \dots, \lambda_k) and the operator G
13:
```

Computational Results: CG

Proposition 1. Consider the setting of Theorem 1, and let and enter the event under which its

conclusions hold. Let
$$\hat{I}_nig(hetaig)$$
 be an estimate of $I_n(heta)$ that satisfies $\mathbb{E}\left[\left\|\hat{I}_n(z)-I_n(z)
ight\|_{H_n(heta_n)}^2\left|Z_{1:n}
ight]\leq \epsilon.$

Then

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{I}}_{\boldsymbol{n}}(\boldsymbol{z}) - \boldsymbol{I}_{\boldsymbol{n}}(\boldsymbol{z})\right\|_{H_{\star}}^{2}\right] \leq 8\epsilon + C\frac{R^{2}p_{\star}^{2}}{\mu_{\star}n}\log^{3}\left(\frac{p}{\delta}\right)$$

Example: Conjugate Gradient

- Requires $T_n(\epsilon) \coloneqq \sqrt{k_n} \log(\left\|I_n(z)\right\|_{H_n(\theta_n)}^2/\epsilon)$ iterations to return an ϵ -approximate minimizer.
- Each iteration requires *n* Hessian-vector products

To make statistical error to be smaller than
$$\epsilon, n \geq n(\epsilon) = \widetilde{O}\left(\frac{R^2 p_\star^2}{\mu_\star \epsilon}\right)$$
 Total error under $O(\epsilon)$ is $O\left(n(\epsilon)T(\epsilon)\right)$ – by Proposition 1

Experiment: Most Influential Subset

MIS Test Questions

- 1. What position did Víctor Vázquez Solsona play? midfielder
- 2. The nationality of Jean-Louis Laya was what? French
- 3. Where is Venera 9 found? Venus
- 4. Who set the standards for ISO 3166-1 alpha-2? International Organization for Standardization
- 5. In which language Nintendo La Rivista Ufficiale monthly football magazine reporting? *Italian*

