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Motivation

Input Data Moc;el roblem: Prediction

s there g cost-efffective ppst-hoc model editing technique to
remove (or edit) behaviors in trained language models, without
re-training the model?

Influence Functions
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Background: Empirical Risk Minimizer
Set-Up:

* 0 € 0, constructed from i.i.d sample z = {(x;, y;)}1=,
* loss function L(z;, 9)

Empirical Risk Minimizer (ERM):
n
eo T

s 1
0 € arg min—z L(z;, 0)
i=1

Maximum Likelihood Estimation (MLE):
n

s 1
0 = arg min—z —logpe(y|x)
beo M
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Theory: Influence Functions

Functional = function that maps a distribution to a real number.

Example: the sample mean, x = 11125;1 x;, as a functional, T(E,),
X = fxan =T(E)
where E, is the empirical distribution.

Why Important?
Easily examine estimator under different distributions

Example: “Contaminated Distribution”

F.=(1—-¢€)F(x)+eG(x)fore €[0,1]

Cat
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Theory: Influence Functions

Consider a prediction problem,

Using a Imear;pp

following approximation  z; = (x'i,yi) € XXY

Training Set

gads to the

Derivative of
contaminatio

Parameter of Interest 9., % distribution
, €
0 € argmin— ) L(z; 0)
0o e .
Parameters with all ‘=1 Change In
training data o parameters due to

(known) removing 1 training
0” € arg m1n(1 — E) L(z;, gylrl}_(%cgwnp)

6eco 1:1

As a Functional

55,1 —r ((1 R+ 6621) —» “Contaminated Distribution
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Theory: Influence Functions

Definition 2: Influence Function

) ) ] Derivative of
The influence functions, IF(x; T, Fy) of T, is “Contaminated Distribution”

i T((1—€)Fy + €8,) — T(Fg)

-0 €

IF(x; T, Fy) =

where §, is the probability measure that places a point mass 1 at x.

-

1. At least asymptotically
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Theory: Influence Functions

Cook and Weisberg (1982) classical result
IF(x; T, Fp) = —Hy 'VgL(z,0)

where' Hy & %2?21 V3L(z;,0) and assumed positive definite.

Parameter of Interest

To remove a training examples z - € =

1Hg is also called the observed Fisher's Information M
2For simplicity allow 6_, = 01,

Sle
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Theory: Implementation Challenges

1 _
0, ~8——H;'VyL(z,0)

Challenge #1:

Computing the inverse Hessian of the empirical risk alone with
large parameters = COSTLY

Solution:
Hessian Vector Products (HVP) to efficiently approximate,
s ~ H;'VyL(z,0)
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Theory: Implementation Challenges

HVP:
The approximation of & still requires the calculation of

s ~ H'VyL(z,0)

Solution:

Frame as solving a linear system
Hx=v->Hww=x

Use first or second order stochastic methods
» Conjugate Gradient Descent
» CURVEBALL (Henriques et al. 2019)
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Method: Conjugate Gradient Descel *

Conjugate Gradient Descent
Algorithm 1: Conjugate Gradient Descent — GD
fort=1,..,T do CGD
Xg < 0,79 =b — Axy,pg =19
fork=1,..,K do

T . .
Two “For” P PrTk Nevy direction X
loops zka1 Apk conjggate .to al!
needed X1 = Xy + app, Previous directions

Tee1 = b — Axy /
T
— pi ATk
041 = 0 + xk X0

e First-order method
> ¥ =x —nVf(xe)
e Accelerates convergences rate of gradient descent by not repeating
13/24 a direction W UNIVERSITY of WASHINGTON



Method: CURVEBALL [Henriques et al. 2019]

Algorithm 2: CURVEBALL [Henriques et al., 2019]

<0
for k=1,
Z.‘_ Second-order newton method
OnIy one Xp1 = PXE
"For” loop Ok+1= O + X3 Uses momentum parameter

* Second-order method
> ye = x = n[VAf(x)] VS (xp)
* Adds curvature term (second order)
* Faster and less memory use
» Reuses previous direction
» Interweaves search direction and parameter update (only1 “For”
loop)
Specifically tailored for deep-learning-scale stochastic optimization

problems
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Implementation Challenges

Challenge #2:
The HVP, requires the loss over the original data set which can
be computationally expensive. Original Training Set
°

Solution: -
Use clustering techniques to .ﬁ Mm";mh
find a mini-batch that is o ® ¢ — oo
representative of the original .*. ° ..
data set. ) o %

Steps: ® o

1. Start with all features
from the Original data set
2. Perform PCA to reduce dimensionality
3. Perform clustering on the features
4. Closes data point to each cluster center to include in the
524 Minibatch W UNIVERSITY of WASHINGTON
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Model Editing: Goal

Task: Model Editing

Goal: Develop a cost-effective, post-hoc model editing technique
to edit knowledge in a trained language models.

Data: Zero Shot Relation Extraction (zsRE)
Dataset (D) Forget(Dy)

Q: What is the name of Another Side
of Bob Dylan’s record label?
Q: What is the name of Another A: Capitol Records
Side of Bob Dylan’s record label?
A: Capitol Records

Remember(Dg)
Q: What is the name of Another Side
of Bob Dylan’s record label?
A: Colombia Records
Q: What country did The Laughing
Cow originate?
A: France

17/24 SLevy et al. 2077



Model Editing: Baseline

Notation
e o, = parameters of the original model ¢ n=learn. rate
* 6= parameters of the edited model e P = Distribution of reg. subset under 6
e T = number of updates
e Lp=loss over DR e ( = Distribution of reg. subset under 8

Algorithm 1: Baseline
Initialize 8, = 0,.
fort=0,...,T—1do
001 =06,— nVLr(Ot)} + \DKL (PHQ)}

end for Y
Newton  Regularization
step term
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Model Editing: Influence Function Method

Notation
e T = number of ¢ §=number of e Lp =loss over Dp
updates for step 1 updates for step 2

Algorithm 2 Influence Function Method

Step 1: Forgetting

Initialize 8, = 6,.
Fort=0,..,T—1do
0ip1 = Pt - H9_01V9LF(0t)}

end for Y
Step 2: Remembering Approximation
Initialize 8, = ;. using IF
fors=0,..,.S—1do

B541= 05— nVL(85) + D, (P11Q)

end for | ’ J

19/ Baseline
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Experimentation: Details

Details:
e # of Non-Edits: 10,000 * Epochs Baseline: 60
e # of Edits: 40 e Epochs Step 1 (forg.): 4

e Repetition: 10 e Epochs Step 2 (rem.): 56
Metrics:
1. Reliability: made edits successfully
Accuracy over Dy (increase)
Accuracy over Dy (decrease)

2. Generality: did not change non-edited input/out

Accuracy over Dy, ,,,_.q4 (increase)
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Results: Accuracy

Results: zsRE 40 Edits

Acc.onDf 1 Acc.onDgr 1T Acc. onNDpop—eq T

1.0 -0 1.0

0.8 1
5‘ 0.8 .
© 0.6 Baseline
S |

‘ IF

8 0.4 0.6
< 0.2

0.0 0.4 1

: 7 5|0 ‘ (I) ' | (I) 2|5 5'0
Epoch Epoch Epoch
*  Reliability: Accuracy over D and Dy are similar
*  Generality: Retention of Non-edited is better with IF method

» “Forgetting” is more targeted
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Conclusion

e Theoretically influence functions
good solution to problem

e However, approximation
techniques — fragile or inaccurate

e Promising results in application
to model editing indicates more
experimentation
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Thank you!

Questions?
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