Model Editing in Language Models Using Influence Functions

Jillian Fisher 08/10/2022

Liwei Jiang

Zaid Harchaoui

Allen Institute for Al

Motivation

Influence Functions

W UNIVERSITY of WASHINGTON

Outline

1. Theory

- Background
- Influence Functions
- 2. Useful for Language Models?
 - Implementation Challenges
- 3. Influence Functions for Model Editing
 - Methods
 - Experiment
 - Results

Background: Empirical Risk Minimizer

Set-Up:

- $\boldsymbol{\theta} \in \Theta$, constructed from i.i.d sample $z = \{(x_i, y_i)\}_{i=1}^n$
- loss function $L(z_i, \theta)$

Empirical Risk Minimizer (ERM): $\widehat{\boldsymbol{\theta}} \in \arg\min_{\widehat{\boldsymbol{\theta}} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \boldsymbol{\theta})$

Maximum Likelihood Estimation (MLE):

$$\widehat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\widehat{\boldsymbol{\theta}}\in\boldsymbol{\Theta}} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\boldsymbol{\theta}}(y|x)$$

W UNIVERSITY of WASHINGTON

Functional = function that maps a distribution to a real number.

Example: the sample mean,
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, as a functional, $T(F_n)$,
 $\bar{x} = \int x \, dF_n = T(F_n)$
where F_n is the empirical distribution.

Why Important?

1

Easily examine estimator under different distributions

Example: "Contaminated Distribution"

 $F_{\epsilon} = (1 - \epsilon)F(x) + \epsilon G(x)$ for $\epsilon \in [0, 1]$

Cat

Theory: Influence Functions

Theory: Influence Functions

Definition 2: Influence Function

The influence functions, $IF(x; T, F_{\theta})$ of T, is

$$IF(x;T,F_{\theta}) = \lim_{\epsilon \to 0} \frac{T((1-\epsilon)F_{\theta} + \epsilon\delta_{x}) - T(F_{\theta})}{\epsilon}$$

where δ_x is the probability measure that places a point mass 1 at x.

At least asymptotically

8/24 2. We assume T is Fisher consistent, $\theta = T(F_{\theta})$

Derivative of

"Contaminated Distribution"

Cook and Weisberg (1982) classical result

$$IF(x;T,F_{\widehat{\theta}}) = -H_{\widehat{\theta}}^{-1}\nabla_{\theta}L(z,\widehat{\theta})$$

where $H_{\theta} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} L(z_{i}, \theta)$ and assumed positive definite.

Parameter of Interest

To remove a training examples $z \rightarrow \epsilon = \frac{1}{r}$

$$\widehat{\boldsymbol{\theta}}_{-z} \approx \widehat{\boldsymbol{\theta}} - \frac{1}{n} H_{\widehat{\boldsymbol{\theta}}}^{-1} \nabla_{\boldsymbol{\theta}} L(z, \widehat{\boldsymbol{\theta}})$$

 $^{1}H_{\theta}$ is also called the observed Fisher's Information Matrix $^{9/24}$ ² For simplicity allow $\theta_{-z} = \theta_{\underline{1},z}$ UNIVERSITY of WASHINGTON

Outline

- 1. Theory
 - Background: ERM and GLM
 - Influence Functions

2. Useful for Language Models?

- Implementation Challenges
- 3. Influence Functions for Model Editing
 - Methods
 - Experiment
 - Results

Theory: Implementation Challenges

$$\widehat{\boldsymbol{\theta}}_{-\boldsymbol{z}} \approx \widehat{\boldsymbol{\theta}} - \frac{1}{n} H_{\boldsymbol{\theta}}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{z}, \widehat{\boldsymbol{\theta}})$$

Challenge #1: Computing the inverse Hessian of the empirical risk alone with large parameters = COSTLY

Solution: Hessian Vector Products (HVP) to efficiently approximate, $s \approx H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z, \hat{\theta})$

Theory: Implementation Challenges

HVP:

The approximation of $\hat{\theta}_z$ still requires the calculation of

 $s \approx H_{\widehat{\theta}}^{-1} \nabla_{\theta} L(z, \widehat{\theta})$

Solution:

Frame as solving a linear system $Hx = v \rightarrow H^{-1}v = x$

Use first or second order stochastic methods

- Conjugate Gradient Descent
- CURVEBALL (Henriques et al. 2019)

Method: Conjugate Gradient Descert

Conjugate Gradient Descent

First-order method

$$► y_t = x_t - η∇f(x_t)$$

• Accelerates convergences rate of gradient descent by not repeating 13/24 a direction W UNIVERSITY of WASHINGTON

Method: CURVEBALL [Henriques et al. 2019]

Second-order method

 \succ $y_t = x_t - \eta [\nabla^2 f(x_t)]^{-1} \nabla f(x_t)$

- Adds curvature term (second order)
- ٠ Faster and less memory use
 - Reuses previous direction
 - Interweaves search direction and parameter update (only1 "For") loop)
- Specifically tailored for deep-learning-scale stochastic optimization problems W UNIVERSITY of WASHINGTON

Implementation Challenges

Challenge #2:

The HVP, requires the loss over the original data set which can be computationally expensive.

Solution:

Use clustering techniques to find a mini-batch that is representative of the original data set.

Steps:

- 1. Start with all features from the Original data set
- 2. Perform PCA to reduce dimensionality
- 3. Perform clustering on the features

4. Closes data point to each cluster center to include in the minibatch

Outline

- 1. Theory
 - Background: ERM and GLM
 - Influence Functions
- 2. Useful for Language Models?
 - Implementation Challenges

3. Influence Functions for Model Editing

- Methods
- Experiment
- Results

Model Editing: Goal

Task: Model Editing

Goal: Develop a cost-effective, post-hoc model editing technique to edit knowledge in a trained language models.

Dataset (D)

Edited (D_{ed}

Q: What is the name of Another Side of Bob Dylan's record label? A: Capitol Records

Non-edited (D_{non-ed}) Q: What country did The Laughing Cow originate? A: France Forget(D_F) Q: What is the name of Another Side of Bob Dylan's record label? A: Capitol Records

Remember(D_R) Q: What is the name of Another Side of Bob Dylan's record label? A: Colombia Records

17/24 ⁸Levy et al. 2017

Model Editing: Baseline

Notation

- θ_0 = parameters of the original model
- $\hat{\theta}$ = parameters of the edited model
- T = number of updates
- L_R = loss over DR

- η= learn. rate
- P = Distribution of reg. subset under θ₀
- Q = Distribution of reg. subset under $\hat{\theta}$

W UNIVERSITY of WASHINGTON

Model Editing: Influence Function Method

Notation

- T = number of updates for step 1
- S = number of updates for step 2

$$L_F = \text{loss over } D_F$$

Algorithm 2 Influence Function Method

Experimentation: Details

Details:

- # of Non-Edits: 10,000
- # of Edits: 40
- Repetition: 10

- Epochs Baseline: 60
- Epochs Step 1 (forg.): 4
- Epochs Step 2 (rem.): 56

Metrics:

1. Reliability: made edits successfully Accuracy over D_R (increase) Accuracy over D_F (decrease)

2. Generality: did not change non-edited input/out

Accuracy over D_{non-ed} (increase)

Results: Accuracy

Conclusion

• Theoretically influence functions good solution to problem

 However, approximation techniques → fragile or inaccurate

 Promising results in application to model editing indicates more experimentation

Thank you! Questions?

References

- Agarwal, Naman, Brian Bullins, and Elad Hazan (2016). "Second-order stochastic optimization in linear time". In: stat 1050, p. 15.
- Basu, Samyadeep, Philip Pope, and Soheil Feizi (2020). "Influence functions in deep learning are fragile". In: arXiv preprint arXiv:2006.14651.
 - Cook, R Dennis and Sanford Weisberg (1982). Residuals and
 - influence in regression. New York: Chapman and Hall.
- De Cao, Nicola, Wilker Aziz, and Ivan Titov (2021). "Editing factual knowledge in language models". In: arXiv preprint arXiv:2104.08164.
 - Han, Xiaochuang, Byron C. Wallace, and Yulia Tsvetkov (2020). "Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions". In: arXiv: 2005.06676 [cs.CL].
- Henriques, João F et al. (2019). "Small steps and giant leaps: Minimal newton solvers for deep learning". In: Proceedings of UNIVERSITY of WASHINGTON